A Note on Fractional Coloring and the Integrality gap of LP for Maximum Weight Independent Set
نویسندگان
چکیده
We prove a tight connection between two important notions in combinatorial optimization. Let G be a graph class (i.e. a subset of all graphs) and r(G) = supG∈G χf (G) ω(G) where χf (G) and ω(G) are the fractional chromatic number and clique number of G respectively. In this note, we prove that r(G) tightly captures the integrality gap of the LP relaxation with clique constraints for the Maximum Weight Independent Set (MWIS) problem. Our proof uses standard applications of multiplicative weight techniques, so it is algorithmic: Any algorithm for rounding the LP can be turned into a fractional coloring algorithm and vice versa. We discuss immediate applications of our results in approximating the fractional chromatic number of certain classes of intersection graphs.
منابع مشابه
A Note on the Integrality Gap in the Nodal Interdiction Problem
In the maximum flow network interdiction problem, an attacker attempts to minimize the maximum flow by interdicting flow on the arcs of network. In this paper, our focus is on the nodal interdiction for network instead of the arc interdiction. Two path inequalities for the node-only interdiction problem are represented. It has been proved that the integrality gap of relaxation of the maximum fl...
متن کاملMaximum Weighted Independent Sets with a Budget
Given a graph G, a non-negative integer k, and a weight function that maps each vertex in G to a positive real number, the Maximum Weighted Budgeted Independent Set (MWBIS) problem is about finding a maximum weighted independent set in G of cardinality at most k. A special case of MWBIS, when the weight assigned to each vertex is equal to its degree in G, is called the Maximum Independent Verte...
متن کاملHow to Tame Rectangles: Solving Independent Set and Coloring of Rectangles via Shrinking
In the Maximum Weight Independent Set of Rectangles (MWISR) problem, we are given a collection of weighted axis-parallel rectangles in the plane. Our goal is to compute a maximum weight subset of pairwise non-overlapping rectangles. Due to its various applications, as well as connections to many other problems in computer science, MWISR has received a lot of attention from the computational geo...
متن کاملColoring and Maximum Independent Set of Rectangles
In this paper, we consider two geometric optimization problems: Rectangle Coloring problem (RCOL) and Maximum Independent Set of Rectangles (MISR). In RCOL, we are given a collection of n rectangles in the plane where overlapping rectangles need to be colored differently, and the goal is to find a coloring that minimizes the number of colors. Let q be the maximum clique size of the instance, i....
متن کاملColoring Down: $3/2$-approximation for special cases of the weighted tree augmentation problem
In this paper, we investigate the weighted tree augmentation problem (TAP), where the goal is to augment a tree with a minimum cost set of edges such that the graph becomes two edge connected. First we show that in weighted TAP, we can restrict our attention to trees which are binary and where all the non-tree edges go between two leaves of the tree. We then give two different top-down coloring...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 55 شماره
صفحات -
تاریخ انتشار 2016